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Fractai Boundary of Domain of Analyticity 
of the Feigenbaum Function and Relation 
to the Mandelbrot Set 

Michael Nauenberg I 

Received August 14, 1986 

The universal map for the period-doubling transition to chaos is studied 
numerically in the complex plane. The boundary of the domain of analyticity of 
this function is obtained graphically and is shown to be a fractal with self- 
similar properties obtained by rescaling with the universal constants c~ and 6. In 
the complex parameter plane, this domain is shown asymptotically to be similar 
to part of the Mandelbrot set. 
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1. I N T R O D U C T I O N  

The ana ly t ic i ty  p roper t ies  of the F e i g e n b a u m - C v i t a n o v i c  f ixed-point  
funct ion g(z) for the p e r i o d - d o u b l i n g  b i furca t ion  t rans i t ion  to chaos  (1'2) 
have been s tudied  by Epste in  and  Lascoux,  (3~ who have shown that  g(z) is 
analyt ic  in a d o m a i n  with a na tu ra l  bounda ry .  The  funct ion g(z) is the 
so lu t ion  of the funct ional  equa t ion  

g(z) = -c~g( g(z/cO ) (1) 

where g(z) is no rma l i zed  to g ( 0 ) =  1, with g ' ( 0 ) = 0  and g " ( 0 ) < 0 ,  and  
= 2.5029... is a universal  scal ing cons tan t  de te rmined  self-consistent ly by 

this equat ion .  A p r o o f  of  the existence of a so lu t ion  of  Eq. (1) was first 
given by Lanfo rd  (4) and  C a m p a n i m o  and  Epstein.  (5) 

In this paper ,  we s tudy  numer ica l ly  the so lu t ion  of an ex tended  
funct ional  equa t ion  

g(z, e )=  --c~g(g(z/cq ~/6), el6) (2) 
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Fig. 1. Contours in the complex z plane for I m g , ( z ) = 0  in the range 0~<x~<10 and 
0~< y~< 10 for (a) n = 6 ,  (b) n = 7 .  



Feigenbaum Function and the Mandelbrot S e t  

# 
t 

i 

461 

Fig. 2. 

d - ! f 

k-.. I , 

Contours in the complex z plane for Im gn(z)=0 in the range 0 < x <  I0~ and 
0< y < 10c~ for n=6.  

where fi = 4.6692... is the universal constant associated with rescaling in the 
complex e parameter space. This functional equation is the renor- 
malization-group transformation for period doubling in the space of 
functions g(z, e), where g(z, O)= g(z) is the fixed point. A similar equation 
was considered originally (1) to first order in e, leading to a linear operator 
that determines the single relevant eigenvalue 6. We shall be interested here 
in evaluating the domain in the complex z and e plane, where there exists a 
solution of this functional equation; this is also the domain of analyticity of 
g(z, ~). In particular, for z = 0  we will show the relation of this domain to 
the well-known Mandelbrot set (6) in the neighborhood of the critical point 
~ = 0 .  

The functional equation (2) can be solved by introducing a sequence 
of polynomials g,(z, ~) 

gn(  Z, ~ ) = ( - -  o~ )n f (2" ) (  Z/O~n, 8/(~ n) (3) 
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for n = 1, 2,..., where f (m) ( z ,  5) = f ( f , . . . ,  f ( z ,  e), e) is the mth iterate of the 
quadratic map 

f ( z ,  5) = 1 -- (c + 5) z 2 (4) 

and c = 1.401155... is the critical value for period-doubling bifurcations. It 
can be readily shown that any sequence of functions defined by Eq. (3) for 
a general map f ( z ,  ~) satisfies the functional relation 

gn+ l(Z, 8)= -o~g,,( g,,(z/o:, e/6 ), 5/6) (5) 

for arbitrary values of ~ and ~. However, when c~ and 6 are the universal 
scaling constants and f ( z ,  e) is the quadratic map, Eq. (4), we show 
numerically that the sequence of polynomials gn(z, 5) converges uniformly 
provided that z and e are restricted to values inside a complex domain. By 
a theorem in complex variables, there exists a function g(z, 5) analytic 
inside this domain that is the limit of the sequence gn(z, 5). According to 

Fig. 3. Contours  in the complex z plane when m changes by unity, where m is the number  of 
iterations for which I f~m)(z/~")l > 10 6, and n = 6. 
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Eq. (5), g(z, e) is therefore a solution of our functional equation (2). 
Expanding g(z, e) in a Taylor series in e and substituting in Eq. (2), it can 
be shown that g(z, ~) is the unique solution of Eq. (2) apart from an overall 
scaling constant. For  values of z and e outside of this domain we find that 
the absolute value of g,(z, e) increases without bounds as n increases. This 
implies that g(z, e) is analytic in a domain with a natural boundary, as was 
by Epstein and Lascoux (3) for the special case that e = 0. We show by 
several graphical examples that this boundary is a fractal with self-similar 
properties under rescaling by the universal constants ~ and & In particular, 
the domain of analyticity of g(0, e) in the complex e plane is similar to part 
of the Mandelbrot set, (6) defined by the complex values of e for which 

lim If(m)(0, e)l < ~ (6) 
r n ~ o Q  

This connection accounts for the observed approximate self-similarity of 
the Mandelbrot set under a rescaling by the factor 6 near e = 0 ,  and 

~i~.~ ~- 

Fig. 6. C o n t o u r s  in the complex  e p lane  for Im  g , (0 ,  e) = 0 in the range  - 50 < Re e < 50 and  

0 < I m e <  100, for n = 6 .  
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likewise of the associated Julia sets, which are approximately self-similar 
under rescaling by a factor ~. In connection with the Mandelbrot set, 
general functional equations for period n-tuplings have been developed 
recently,~7 ~o) with n = 2 corresponding to Eq. (2). We expect that our dis- 
cussion, which is confined to period doubling, can be readily extended to 
the more general case. 

2. G R A P H I C A L  RESULTS 

A convenient way to represent graphically the complex functions 
g,(z, e), Eq. (3), is to plot contours of constant values of its real and 
imaginary parts. We start with the Feigenbaum fixed-point function g(z), 
and show in Figs. la and lb the contours in the complex z = x + iy plane 
for Im g,(z)  = 0 in the range 0 ~< x ~< 10 and 0 ~< y ~< 10 for n = 6 and n = 7, 
respectively. The solutions are restricted to the upper right-hand quadrant, 
because g ~ ( - z ) =  g,(z)  and g * ( z ) =  g,(z*). These contours are terminated 
whenever I g,(z)l > r ,  where we have chosen r =  1 0  6, but the graphical 
results are insensitive to the choice of a large upper bound for I g,(z)J. A 
careful comparison of the contours in these two figures demonstrates 
graphically the rapid convergence of the sequence g,(z, e) inside the 
domain of validity of Eq. (2), as well as the fractal nature of the boundary 
of this domain, which appears with increasing resolution as n increases. 
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Fig. 7. C o n t o u r s  in the  c o m p l e x  e p l ane  for  I m  g , ( 0 ,  e) = 0 in the  r a n g e  - 506 < Re e < 506 
a n d  0 < I m e  < 1006, for  n = 6. 
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The scaling of the domain of analyticity, which follows from Eq. (1), is 
illustrated in Fig. 2 by showing the same contours in the range 0 < x < 10e 
and 0 < y < 10e. A picture of a few contours for Im g(z)  = 0 near z = 0 was 
obtained originally by Epstein and Lascoux. (3) 

The complement of this domain can be evaluated numerically by 
determining the complex values of z for which the absolute value of the 
mth iterate f ( ' )(z/c~% 0) exceeds some large upper bound. This is shown in 
Fig. 3: the contours separate regions where the number  of iterations m, 
with m < 2 ", differs by one. Since Izl = oc is an attractor for the quadratic 
map, Eq. (4), the fractal boundary  of this domain is also approximately the 
scaled Julia set associated with this map at the critical point. This connec- 
tion implies that the domain of analyticity of g(z)  cannot be extended 
beyond this boundary, as has been shown rigorously in Ref. 3. 

The fractal boundary  is the location of the singularities of g(z).  It has 
been shown (3'4) that the singularities that lie nearest to the origin are deter- 
mined by the condition 

g(zo/e)  = z*  (7) 

where Zo is determined numerically; z0=  +1.83126_+i2.68317. It can be 
readily seen that Eq. (1) implies that inside the domain of analyticity near 
z = Zo, g(z)  has the power-law form 

g ( z )  - Zo) (8) 

where the exponent p = In c~/ln(fl/cO, and g'(zo/~ ) = fiei% Numerically we 

Fig. 8. Contours in the complex e plane for Im g,(0, e) = 0 in the range - 5062 < Re e < 5062 
and 0 < Im e < 10062, for n = 6. 
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find that fl=4.924931 and ~b=0.8621162, which gives p =  1.355446. The 
residue c is a function of z satisfying the condition 

c*( z*  - z *  ) = - e ip%[g ' ( zo /OO(z  - z0)/~] (9) 

but we find numerically that c is approximately a constant. 
To illustrate the dependence of g(z ,  e) on e and the convergence of the 

sequence g , ( z ,  e), we show, as an example, in Figs. 4a and 4b, the contours 
for Im g , ( z ,  e ) =  0 with e = -0.0165, for n = 6 and 7, respectively, and in 
Figs. 5a and 5b the corresponding contours for e = -0.165. The contours 

Fig. 9. Contours in the complex e plane for constant values of real g,(0, e) in the range 
- 0 . 1 6 7 < R e e < 0 . 1 6 7  and 0 < I m  e<0.267 for (a) n = 6 ,  (b) n = 7 .  
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for different n are indistinguishable except along the tips of the antennae- 
like regions, which grow as n increases. We shall return to this point later. 

Next we consider the domain of analyticity of g(z, e) for z = 0 in the 
complex e plane. In Fig. 6, we show the contours Im g,(0, e) = 0 for n = 6 
in the range - 50 < Re ~ < 50 and 0 < Im e < 100. The fractal structure of 
the boundary of this domain has remarkable similarities with the 
corresponding fractal boundary of the domain of analyticity of g(z) in the 
complex z plane. Figures 7 and 8 show the corresponding domain scaled up 
by a factor 6 and ~2, respectively, illustrating the appearance of the boun- 
dary of a Mandelbrot-like set. This connection is shown more clearly in 
Figs. 9a and 9b, where we plot contours of constant values of the real part  

Fig. 10. Contours in the complex e plane for constant values of Im gn(0, e) in the range 
-0 .167<Ree<0 .167  and 0 < I m e < 0 . 2 6 7  for (a) n = 6 ,  (b) n=7 .  



\ 

(a) 

( b )  

Fig. 11. Contour in the complex e plane when m changes by unity, where m is the number of 
iterations such that j fro(0, e/6")l > 10 6 with -0.1c~ 7 -< Re e < 0.16 7 and 0 < Im e < 0.2c~ 7 and (a) 
n = 6 ,  (b) n = 7 .  
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Fig. 12. Contours in the complex e plane for constant values of real gn(0, e) in the range 
- 0 . 1 6 6 < R e ~ < 0  and 0 < I m  e<0.267 for (a) n = 6 ,  (b) n = 7 ,  
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of gn(0, e) for n = 6 and 7, respectively, in the range -0.167 < Re e < 0.137 
and 0 < I r a  e<0.267, and in Figs. 10a and 10b, where we plot the 
corresponding contours for the imaginary part of gn(0, e). The complement 
of this set is shown in Figs. l l a  and l lb ,  where we evaluate the number of 
iterates m for which ]fm(0, t3/(~n)1 > 10 6 for n = 6 and 7, and plot contours 
where m changes by unity, for m < 2 n. This is also a graphical method for 
evaluating the complement of the Mandelbrot set, but only approximately, 
because, according to Eq. (6), there should be no restrictions on the num- 
ber of iterations m. Note that the rapid accumulation of these contours into 
treelike structures does not appear in Figs. 9 and 10 except for some dark 
specks, which correspond to the white specks inside the trees of Fig. 11. 
Blowups of these specks show that these regions are also Mandelbrot-like 
sets. The absence of the treelike structures in Figs. 9 and 10 is due to lack 
of graphical resolution. This is demonstrated, for example, in Figs. 12a and 
12b, which are blowups of Figs. 9a and 9b, and in Fig. 6, where the treelike 
structures are resolved. Figure 12 also resolves in further detail the con- 
tours of constant value of real gn(0, e) near the fractal boundary, showing 
the accumulation of these contours near the fractal boundary; this 
demonstrates graphically that g(0, e) is singular on this boundary. 

The convergence of g,(0, e) is verified numerically by comparing 
corresponding contours for different values of n. In particular, it is evident 
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The function g.(0, e) for Ime = 0 in the interval -- 100 ~< Re e ~< 100 and n = 6. 
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Fig. 14. The difference g,+1(O,~)-g,(O,g) for Img=O in the interval -lO0<Re~<100 

and n = 6. 
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from Figs. 1 la and l l b  that the treelike regions grow (~~ with n, indicating 
that the convergence is expected to be very slow in these regions. This can 
be demonstrated along the real e axis, where we can readily study the 
behavior of the sequence gn(O,e). In Fig. 13 we plot gn(O,e) for 
-100~<e~< 100 and n = 6 ,  showing the onset of rapid oscillations for 
e i> 50, where the domain narrows toward the real axis. Furthermore, the 
region of rapid oscillation is marked by increasingly slower convergence of 
the sequence, as can be seen in Fig. 14 where we plot the difference 
gn+l(0, e ) -gn(0 ,  e). The amplitude and frequency of these oscillations 
increase with e, except for intervals of slow variation, as can be seen in 
Fig. 15, where we have extended the interval to - 4 0 0 0 < e < 4 0 0 0 .  This 
interesting behavior is due to the fact that positive, real e corresponds to 
the chaotic domain for the quadratic map. 

3. S U M M A R Y  

We have shown that the solution g(z, e) of the functional equation (2) 
for the period-doubling transition to chaos is analytic inside a domain in 
the complex z and e planes with a fractal boundary that has self-similarity 
properties under rescaling by the universal constants e and 3. For the fixed- 
point solution g(z, 0) we have extended the calculation of this domain, 
which had been studied previously by Epstein and Lascoux. (3) For the 
function g(0, e) the corresponding domain for large values of let is shown 
to be similar to part of the Mandelbrot set (6) whose properties have been 
studied by Douady and Hubbard, (12) Sullivan, ~13) and Milnor. ~11) 
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